number of rabbits

20

May 1st

Name:	Date:

INTERPRETING ECOLOGICAL DATA

Graph 1: Rabbits Over Time

- a. The graph shows a _____ growth curve.
- b. The carrying capacity for rabbits is _____
- c. During which month were the rabbits in exponential growth?

Graph 2: Average Toe Length

a. In 1800, about how many people surveyed had a 3 cm toe?

How many in 2000? _____

- b. The data shows the _____ selection has occurred?
- c. In 2000, what is the average toe length? _____ What is the average toe length in 1800 _____

June 1st

Aug 1st

Sept 1st

Graph 3: Mexico and US

a. In Mexico	, what percentage c	f the population	is between (0-4 years
of age?	In the US?			

- b. Which population is growing the fastest?
- c. Which age group has the smallest number in both countries?

Chart 4: Trapping Geese

In order to estimate the population of geese in Northern Wisconsin, ecologists marked 10 geese and then released them back into the population. Over a 6 year period, geese were trapped and their numbers recorded.

a. Use the formula to ca	lculate the estimated	number of geese in the
area studied?		

h	This technique	is called	&	
υ.	THIS LECTIFICATE	is called	α	

c. Supposing more of the geese found in the trap had the mark,	
would the estimated number of geese in the area be greater or lesser?	

Year	Geese Trapped	Number with Mark
1980	10	1
1981	15	1
1982	12	1
1983	8	0
1984	5	2
1985	10	1

(Total number captured) x (number marked)

(total number recaptured with mark)

Chart 5: Mushroom Plots

Another ecologist uses a different method to estimate the number of mushrooms in a forest. She plots a 10x10 area and randomly chooses 5 spots, where she counts the number of mushrooms in the plots and records them on the grid.

	5			2
3				
	2		3	

a.Calculate the number of mushrooms in the forest based on the grid data:	
o. Thie technique is called	

Chart 6: Snakes & Mice

The data shows populations of snake and mice found in an experimental field.

a. During which year was	the mouse	population	at zero	population
arowth?				

- b. What is the carrying capacity for snakes?
- c. What is the carrying capacity for mice? _____
- d. What is the rate of growth (r) for mice during 1970? _____ During 1980? _____

Year	Snakes	Mice born	Mice died
1960	2	1000	200
1970	10	800	300
1980	30	400	500
1990	15	600	550
2000	14	620	600
2001	15	640	580