Understanding Population Growth Ch. 8.1-8.3

Population Ecology

- Population Ecology = Study of populations and why their numbers change over time \qquad
- Population = Group of individuals of same species living in the same geographic area at the same time

Population Density

- Population Density = The number of individuals of a species per unit area at a given time
- Individuals / area
- Ex: 1400 caribou/mi²
- Ex: 3 polar bears/mi²

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Survivorship Curves

- Proportion of a population to survive to breeding age
-Type $\mathrm{I}=$
- survival decreases with age
- Type II =
- survival doesn't change with age
-Type III =
- survival increases with age

Change in Population Size

\qquad
\qquad
\qquad
\qquad
\qquad United States, the number of births, deaths, immigrants, and emigrants affect population size.

Sample Calculations

\qquad

1. A town of 1,000 people experienced 16 births and 12 deaths. Calculate the annual \qquad rate of growth.

$$
r=\frac{(b-d)+(i-e)}{10} \quad r=16-12 / 10=0.4 \%
$$

- A town of 20,000 people experienced a birth rate of 48 and a death rate of 18 . Immigration and emigration were 12 and 3 respectively. Calculate the annual rate of growth.
\qquad
\qquad
\qquad
\qquad
$r=\frac{(b-d)+(i-e)}{10} r=(48-18)+(12-3) / 10=3.9 \%$ \qquad

Population Age Structure

Age Structure Diagrams - shows the percentage of population by age and gender.

Exponential Growth

Exponential Growth

- Biotic Potential - the maximum reproductive capacity of a population if resources are unlimited. (The growth rate under ideal conditions).
- This leads to a J- Shaped Curve of exponential growth

Biotic Potential isn't realistic because of limiting factors.

St. Matthew's Island reindeer population crash.

- Overshooting carrying capacity can lead to population crash
- Abrupt decline in population density - causes?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The End (Happy Thanksgiving)

Calculate Population Density

\qquad

- It has been stated that everyone in the United States could live comfortably inside the State of Texas. The 2010 population of the United States was 307 million people. The area of Texas is 260,000 mi^{2}. Assuming that the entire population of the US did move to Texas, what would be the population density per mi^{2} ?
- 307,000,000 people / 260,000 $\mathrm{mi}^{2} /=$ people $/ \mathrm{mi}^{2}$
- Fresno's Pop. Density - 500,000 people in $105 \mathrm{mi}^{2}$
\qquad
\qquad
\qquad
- 500,000 people $/ 105 \mathrm{mi}^{2}=4,784$ people $/ \mathrm{mi}^{2}$
- New York City Pop. Density- $8,200,000$ people in $489 \mathrm{mi}^{2}$
- 8,200,000 people / $489 \mathrm{mi}^{2}=17,599$ people $/ \mathrm{mi}^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

