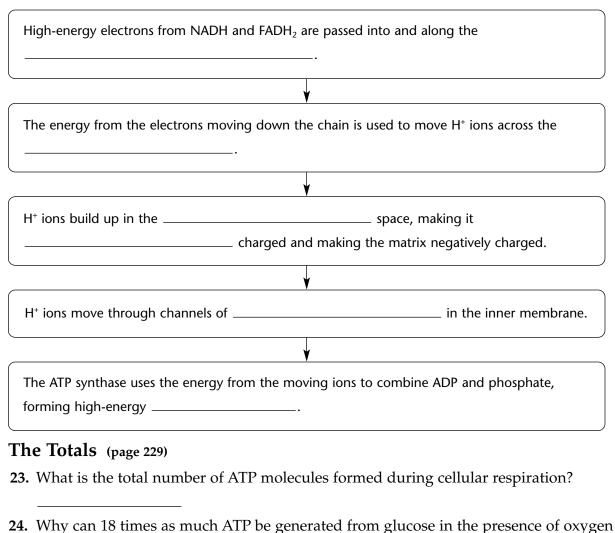
Section 9–2 The Krebs Cycle and Electron Transport (pages 226–232)

This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy electrons are used during the third stage, called electron transport.

Introduction (page 226)

- 1. At the end of glycolysis, how much of the chemical energy in glucose is still unused?
- 2. Because the final stages of cellular respiration require oxygen, they are said to be

The Krebs Cycle (pages 226–227)


3. In the presence of oxygen, how is the pyruvic acid produced in glycolysis used?

- 4. What happens to pyruvic acid during the Krebs cycle?
- 5. Why is the Krebs cycle also known as the citric acid cycle? ______
- 6. When does the Krebs cycle begin?
- 7. What happens to each of the 3 carbon atoms in pyruvic acid when it is broken down?

- 8. What happens to the carbon dioxide produced in breaking down pyruvic acid?
- 9. How is citric acid produced?
- 10. During the energy extraction part of the Krebs cycle, how many molecules of CO_2 are released? _____
- **11.** What is the energy tally from 1 molecule of pyruvic acid during the Krebs cycle?

Name	Class	Date			
2. When electrons join NA	$\mathrm{D}^{\scriptscriptstyle +}$ and FAD during the Krebs c	cycle, what do they form?			
•	Why is the 4-carbon compound generated in the breakdown of citric acid the only permanent compound in the Krebs cycle?				
Electron Transport (pag 14. What is the electron tran	;es 228–229) nsport chain?				
	What does the electron transport chain use the high-energy electrons from the Krebs cycle for?				
6. How does the location of the electron transport chain differ in eukaryotes and prokaryotes?					
	transport chain get the high-er	<i>e,</i>			
of the electron transport 9. What is the energy of the	the following sentence true or false? Hydrogen serves as the final electron acceptor the electron transport chain That is the energy of the high-energy electrons used for every time 2 high-energy ectrons move down the electron transport chain?				
	s in the intermembrane space to nto the matrix?				
• •	ATP molecules are produced as he electron transport chain?				

22. Complete the flowchart about electron transport.

25. What happens to the 62 percent of the total energy of glucose that is not used to make ATP molecules?

than when oxygen is not available?

26. What are the final waste products of cellular respiration? _____

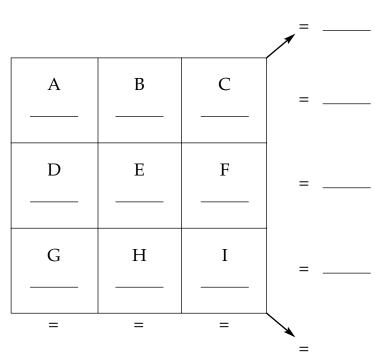
Energy and Exercise (pages 230–231)

27. What are three sources of ATP a human body uses at the beginning of a race?

Nai	ame Cl	ass	Date		
28.	When a runner needs quick energy for a short race, what source can supply enough ATP for about 90 seconds?				
29.	. Why does a sprinter have an oxygen debt to repay after the race is over?				
30.	• A runner needs more energy for a longer race. How does the body generate the necessary ATP?				
31.	31. Why are aerobic forms of exercise so beneficial for weight control?				
	Comparing Photosynthesis and Cel 2. If photosynthesis is the process that "dep what is cellular respiration?	posits" energy in a "savir	ngs account," then		
33.	3. How are photosynthesis and cellular res	piration opposite in term	is of carbon dioxide?		
34.	I. How are photosynthesis and cellular res	piration opposite in term	ns of oxygen?		

Class

WordWise


Match each definition in the left column with the correct term in the right column. Then, write the number of each term in the box below on the line under the appropriate letter. When you have filled in all the boxes, add up the numbers in each column, row, and diagonal. All the sums should be the same.

Definition

- **A.** The process that releases energy from food molecules by producing ATP in the absence of oxygen
- **B.** The second stage of cellular respiration
- **C.** An electron carrier
- **D.** The stage of cellular respiration in which a molecule of glucose is broken into two molecules of pyruvic acid
- **E.** The process that releases energy by breaking down food molecules in the presence of oxygen
- **F.** The amount of energy needed to raise the temperature of 1 gram of water 1 degree Celsius
- G. A process that does not require oxygen
- H. A process that requires oxygen
- I. A series of carrier proteins in the inner membrane of mitochondria

Term

- 1. Krebs cycle
- 2. anaerobic
- 3. calorie
- 4. electron transport chain
- 5. cellular respiration
- 6. fermentation
- 7. glycolysis
- 8. NAD⁺
- 9. aerobic

Name