1 Chapter 5

Microbial Metabolism

2 Catabolic and Anabolic Reactions

• Metabolism: The sum of the chemical reactions in an organism

3 Catabolic and Anabolic Reactions

- Catabolism: Provides energy and building blocks for anabolism.
- Anabolism: Uses energy and building blocks to build large molecules

4 Role of ATP in Coupling Reactions

5 Catabolic and Anabolic Reactions

- A metabolic pathway is a sequence of enzymatically catalyzed chemical reactions in a cell
- Metabolic pathways are determined by enzymes
- Enzymes are encoded by genes

6 Collision Theory

- The collision theory states that chemical reactions can occur when atoms, ions, and molecules collide
- Activation energy is needed to disrupt electronic configurations
- Reaction rate is the frequency of collisions with enough energy to bring about a reaction.
- Reaction rate can be increased by enzymes or by increasing temperature or pressure

7 Energy Requirements of a Chemical Reaction

8 Enzyme Components

- Biological catalysts
 - Specific for a chemical reaction; not used up in that reaction
- Apoenzyme: Protein
- Cofactor: Nonprotein component
 Coenzyme: Organic cofactor
- Holoenzyme: Apoenzyme plus cofactor

9 Components of a Holoenzyme

- 10 Important Coenzymes
 - NAD⁺
 - NADP⁺
 - FAD
 - Coenzyme A

11 Enzyme Specificity and Efficiency

• The turnover number is generally 1 to 10,000 molecules per second

12 The Mechanism of Enzymatic Action

13 The Mechanism of Enzymatic Action

14 Enzyme Classification

- Oxidoreductase: Oxidation-reduction reactions
- Transferase: Transfer functional groups
- Hydrolase: Hydrolysis
- Lyase: Removal of atoms without hydrolysis
- Isomerase: Rearrangement of atoms
- Ligase: Joining of molecules, uses ATP
- 15 Factors Influencing Enzyme Activity

- Temperature
- ∎ pH
- Substrate concentration
- Inhibitors
- 16 Factors Influencing Enzyme Activity
 - Temperature and pH denature proteins
- 17 Effect of Temperature on Enzyme Activity
- 18 Effect of pH on Enzyme Activity
- 19 Effect of Substrate Concentration on Enzyme Activity
- 20 Enzyme Inhibitors: Competitive Inhibition
- 21 Enzyme Inhibitors: Competitive Inhibition
- 22 Enzyme Inhibitors: Noncompetitive Inhibition
- 23 Enzyme Inhibitors: Feedback Inhibition
- 24 Ribozymes
 - RNA that cuts and splices RNA

25 Oxidation-Reduction Reactions

- Oxidation: Removal of electrons
- Reduction: Gain of electrons
- Redox reaction: An oxidation reaction paired with a reduction reaction
- 26 Oxidation-Reduction
- 27 Oxidation-Reduction Reactions
 - In biological systems, the electrons are often associated with hydrogen atoms. Biological oxidations are often dehydrogenations.
- 28 Representative Biological Oxidation
- 29 The Generation of ATP
 - ATP is generated by the phosphorylation of ADP

30 Substrate-Level Phosphorylation

- Energy from the transfer of a high-energy PO₄- to ADP generates ATP
- 31 Oxidative Phosphorylation
 - Energy released from transfer of electrons (oxidation) of one compound to another (reduction) is used to generate ATP in the electron transport chain

32 Photophosphorylation

• Light causes chlorophyll to give up electrons. Energy released from transfer of electrons (oxidation) of chlorophyll through a system of carrier molecules is used to generate ATP.

33 Metabolic Pathways of Energy Production

34 Carbohydrate Catabolism

- The breakdown of carbohydrates to release energy
 - Glycolysis
 - Krebs cycle
 - Electron transport chain

35 Glycolysis

The oxidation of glucose to pyruvic acid produces ATP and NADH

36 Preparatory Stage of Glycolysis

- 2 ATP are used
- Glucose is split to form 2 glucose-3-phosphate

37 Energy-Conserving Stage of Glycolysis

- 2 glucose-3-phosphate oxidized to 2 pyruvic acid
- 4 ATP produced
- 2 NADH produced

38 Glycolysis

- Glucose + 2 ATP + 2 ADP + 2 PO₄⁻ + 2 NAD⁺ \rightarrow 2 pyruvic acid + 4 ATP + 2 NADH + 2H⁺

39 Alternatives to Glycolysis

- Pentose phosphate pathway
 - Uses pentoses and NADPH
 - Operates with glycolysis
- Entner-Doudoroff pathway
 - Produces NADPH and ATP
 - Does not involve glycolysis
 - Pseudomonas, Rhizobium, Agrobacterium

40 Cellular Respiration

- Oxidation of molecules liberates electrons for an electron transport chain
- ATP is generated by oxidative phosphorylation

41 Intermediate Step

Pyruvic acid (from glycolysis) is oxidized and decarboyxlated

42 The Krebs Cycle

- Oxidation of acetyl CoA produces NADH and FADH₂
- 43 The Krebs Cycle

44 Description Transport Chain

- A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain
- Energy released can be used to produce ATP by chemiosmosis

45 Overview of Respiration and Fermentation

- 46 Chemiosmotic Generation of ATP
- 47 An Overview of Chemiosmosis

48 A Summary of Respiration

- Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O₂).
- Anaerobic respiration: The final electron acceptor in the electron transport chain is not O₂. Yields less energy than aerobic respiration because only part of the Krebs cycles operates under anaerobic conditions.
- 49 Respiration
- 50 Anaerobic Respiration
- 51 Carbohydrate Catabolism
- 52 Carbohydrate Catabolism

• Energy produced from complete oxidation of one glucose using aerobic respiration

53 Carbohydrate Catabolism

ATP produced from complete oxidation of one glucose using aerobic respiration

54 Carbohydrate Catabolism

36 ATPs are produced in eukaryotes

55 **Fermentation**

- Any spoilage of food by microorganisms (general use)
- Any process that produces alcoholic beverages or acidic dairy products (general use)
- Any large-scale microbial process occurring with or without air (common definition used in industry)

56 Fermentation

- Scientific definition:
 - Releases energy from oxidation of organic molecules
 - Does not require oxygen
 - Does not use the Krebs cycle or ETC
 - Uses an organic molecule as the final electron acceptor

57 An Overview of Fermentation

58 End-Products of Fermentation

59 Fermentation

- Alcohol fermentation: Produces ethanol + CO₂
- Lactic acid fermentation: Produces lactic acid
 - Homolactic fermentation: Produces lactic acid only
 - Heterolactic fermentation: Produces lactic acid and other compounds
- 60 Types of Fermentation
- 61 A Fermentation Test
- 62 **Types of Fermentation**
- 63 Types of Fermentation
- 64 🔳 Lipid Catabolism
- 65 Catabolism of Organic Food Molecules
- 66 🔲 Protein Catabolism
- 67 Protein Catabolism
- 68 🔲 Protein Catabolism
- 69 🔲 Protein Catabolism
- 70 Biochemical Tests
 - Used to identify bacteria.
- 71 Photosynthesis
- 72 Photosynthesis
 - Photo: Conversion of light energy into chemical energy (ATP)
 - Light-dependent (light) reactions
 - Synthesis:
 - Carbon fixation: Fixing carbon into organic molecules
 - Light-independent (dark) reaction: Calvin-Benson cycle

73 Photosynthesis

- Oxygenic:
- Anoxygenic:
- 74 Cyclic Photophosphorylation
- 75 Noncyclic Photophosphorylation
- 76 Calvin-Benson Cycle
- 77 Photosynthesis Compared

78 Chemotrophs

- Use energy from chemicals
- Chemoheterotroph
- •
- •
- •
- •
- -
- Energy is used in anabolism

79 Chemotrophs

- Use energy from chemicals
- Chemoautotroph, Thiobacillus ferrooxidans
 - •
 - -
 - •
- •
- •

Energy used in the Calvin-Benson cycle to fix CO₂

80 Phototrophs

- Use light energy
- .
- .
- .
- Photoautotrophs use energy in the Calvin-Benson cycle to fix CO₂
- Photoheterotrophs use energy
- 81 Requirements of ATP Production
- 82 A Nutritional Classification of Organisms
- 83 A Nutritional Classification of Organisms
- 84 A Nutritional Classification of Organisms
- 85 Metabolic Diversity among Organisms

- 86 Polysaccharide Biosynthesis
- 87 🔲 Lipid Biosynthesis
- 88 Pathways of Amino Acid Biosynthesis
- 89 Amino Acid Biosynthesis
- 90 Purine and Pyrimidine Biosynthesis
- 91 **The Integration of Metabolism**
 - Amphibolic pathways: Metabolic pathways that have both catabolic and anabolic functions
- 92 Amphibolic Pathways
- 93 Amphibolic Pathways