1 Chapter 4

Functional Anatomy of Prokaryotic and Eukaryotic Cells

2 Prokaryotic and Eukaryotic Cells

- Prokaryote comes from the Greek words for prenucleus.
- Eukaryote comes from the Greek words for true nucleus.

3 Prokaryote

- One circular chromosome, not in a membrane
- No histones
- No organelles
- Peptidoglycan cell walls if Bacteria
- Pseudomurein cell walls if Archaea
- Binary fission

4 Prokaryotic Cells: Shapes

- Average size: 0.2 –1.0 μ m \times 2 8 μ m
- Most bacteria are monomorphic
- A few are pleomorphic

5 Basic Shapes

- Bacillus (rod-shaped)
- Coccus (spherical)
- Spiral
 - Spirillum
 - Vibrio
 - Spirochete

6 Bacillus or Bacillus

- Scientific name: Bacillus
- Shape: Bacillus

7 Junusually Shaped Bacteria

8 Junusually Shaped Bacteria

9 Arrangements

- Pairs: Diplococci, diplobacilli
- Clusters: Staphylococci
- •
- Chains: Streptococci, streptobacilli

10 The Structure of a Prokaryotic Cell

11 Glycocalyx

- Outside cell wall
- Usually sticky
- Capsule: neatly organized

12 Flagella

- Outside cell wall
- Made of chains of flagellin
- Attached to a protein hook
- Anchored to the wall and membrane by the basal body

13 The Structure of a Prokaryotic Flagellum

14 Arrangements of Bacterial Flagella

15 Motile Cells

- Rotate flagella to run or tumble
- Move toward or away from stimuli (taxis)
- Flagella proteins are H antigens (e.g., *E. coli* O157:H7)

16 Motile Cells

17 Axial Filaments

- Also called endoflagella
- In spirochetes
- Anchored at one end of a cell
- Rotation causes cell to move

18 A Diagram of Axial Filaments

19 Fimbriae and Pili

Fimbriae allow attachment

20 🔳 Fimbriae and Pili

- Pili
 - Facilitate transfer of DNA from one cell to another
 - Gliding motility
 - Twitching motility

21 The Cell Wall

- Prevents osmotic lysis
- Made of peptidoglycan (in bacteria)

22 Gram-positive

Cell Wall

- Thick peptidoglycan
- Teichoic acids

23 Peptidoglycan

- Polymer of disaccharide:
 - N-acetylglucosamine (NAG)
 - N-acetylmuramic acid (NAM)

24 Peptidoglycan in Gram-Positive Bacteria

- Linked by polypeptides
- 25 Gram-Positive Bacterial Cell Wall
- 26 Gram-Negative Bacterial Cell Wall

27 Gram-Positive Cell Walls

- Teichoic acids
 - Lipoteichoic acid links to plasma membrane
 - Wall teichoic acid links to peptidoglycan
- May regulate movement of cations
- Polysaccharides provide antigenic variation

28 Gram-Negative Cell Wall

29 Gram-Negative Outer Membrane

- Lipopolysaccharides, lipoproteins, phospholipids
- Forms the periplasm between the outer membrane and the plasma membrane

30 Gram-Negative Outer Membrane

- Protection from phagocytes, complement, and antibiotics
- O polysaccharide antigen, e.g., E. coli O157:H7
- Lipid A is an endotoxin
- Porins (proteins) form channels through membrane

31 **The Gram Stain**

32 I The Gram Stain Mechanism

- Crystal violet-iodine crystals form in cell
- Gram-positive
 - Alcohol dehydrates peptidoglycan
 - CV-I crystals do not leave
- Gram-negative
 - Alcohol dissolves outer membrane and leaves holes in peptidoglycan
 - CV-I washes out

33 Gram-Positive Cell Wall

- Disrupted by lysozyme
- Penicillin sensitive

34 Atypical Cell Walls

- Acid-fast cell walls
 - Like gram-positive
 - Waxy lipid (mycolic acid) bound to peptidoglycan
 - Mycobacterium
 - Nocardia

35 Atypical Cell Walls

- Mycoplasmas
 - Lack cell walls
 - Sterols in plasma membrane
- Archaea
 - Wall-less or
 - Walls of pseudomurein (lack NAM and D-amino acids)

36 Damage to the Cell Wall

- Lysozyme digests disaccharide in peptidoglycan
- Penicillin inhibits peptide bridges in peptidoglycan
- Protoplast is a wall-less cell
- Spheroplast is a wall-less gram-positive cell
 - Protoplasts and spheroplasts are susceptible to osmotic lysis
- L forms are wall-less cells that swell into irregular shapes

37 🔳 The Plasma Membrane

- 38 The Plasma Membrane
 - Phospholipid bilayer

- Peripheral proteins
- Integral proteins
- Transmembrane
- Proteins

39 📕 Fluid Mosaic Model

- Membrane is as viscous as olive oil
- Proteins move to function
- Phospholipids rotate
 - and move laterally

40 🔲 The Plasma Membrane

- Selective permeability allows passage of some molecules
- Enzymes for ATP production
- Photosynthetic pigments on foldings called chromatophores or thylakoids

41 🔲 The Plasma Membrane

 Damage to the membrane by alcohols, quaternary ammonium (detergents), and polymyxin antibiotics causes leakage of cell contents

42 Movement of Materials across Membranes

• Simple diffusion: Movement of a solute from an area of high concentration to an area of low concentration

43 Movement of Materials across Membranes

Facilitated diffusion: Solute combines with a transporter protein in the membrane

44 Movement of Materials across Membranes

45 Movement of Materials across Membranes

- Osmosis: The movement of water across a selectively permeable membrane from an area of high water to an area of lower water concentration
- Osmotic pressure: The pressure needed to stop the movement of water across the membrane

46 Movement of Materials across Membranes

- Through lipid layer
- Aquaporins (water channels)
- 47 **The Principle of Osmosis**
- 48 **The Principle of Osmosis**

49 Movement of Materials across Membranes

- Active transport: Requires a transporter protein and ATP
- Group translocation: Requires a transporter protein and PEP

50 Cytoplasm

- The substance inside the plasma membrane
- 51 The Nucleoid
 - Bacterial chromosome
- 52 Ribosomes
- 53 **The Prokaryotic Ribosome**
 - Protein synthesis
 - 70S
 - 50S + 30S subunits

54 Magnetosomes

55 Inclusions

- Metachromatic granules (volutin)
 - Polysaccharide granules
 - Lipid inclusions
 - Sulfur granules
 - Carboxysomes

•

- Gas vacuoles
- Magnetosomes
- Phosphate reserves

•

- Energy reserves
- Energy reserves
- Energy reserves
- Ribulose 1,5-diphosphate carboxylase for CO₂ fixation
- Protein-covered cylinders
- Iron oxide

(destroys H₂O₂)

56 Endospores

- Resting cells
- Resistant to desiccation, heat, chemicals
- Bacillus, Clostridium
- Sporulation: Endospore formation
- Germination: Return to vegetative state
- 57 Endospores
- 58 Formation of Endospores by Sporulation
- 59 🔳 The Eukaryotic Cell
- 60 🔳 Flagella and Cilia
- 61 **Flagella and Cilia**
 - Microtubules
 - Tubulin
 - 9 pairs + 2 array

62 I The Cell Wall and Glycocalyx

- Cell wall
 - Plants, algae, fungi
 - Carbohydrates
- Cellulose, chitin, glucan, mannan
- Glycocalyx
 - Carbohydrates extending from animal plasma membrane
 - Bonded to proteins and lipids in membrane

63 🔲 The Plasma Membrane

- Phospholipid bilayer
- Peripheral proteins
- Integral proteins
- Transmembrane proteins

- Sterols
- Glycocalyx carbohydrates

64 🔳 The Plasma Membrane

- Selective permeability allows passage of some molecules
- Simple diffusion
- Facilitative diffusion
- Osmosis
- Active transport
- Endocytosis
 - Phagocytosis: Pseudopods extend and engulf particles
 - Pinocytosis: Membrane folds inward, bringing in fluid and dissolved substances

65 Cytoplasm

66 Cytoplasm

- Cytoplasm membrane: Substance inside plasma and outside nucleus
- Cytosol: Fluid portion of cytoplasm
- Cytoskeleton: Microfilaments, intermediate filaments, microtubules
- Cytoplasmic streaming: Movement of cytoplasm throughout cells

67 Ribosomes

- Protein synthesis
- 80S
 - Membrane-bound: Attached to ER
 - Free: In cytoplasm
- 70S
 - In chloroplasts and mitochondria

68 Organelles

- Nucleus: Contains chromosomes
- ER: Transport network
- Golgi complex: Membrane formation and secretion
- Lysosome: Digestive enzymes
- Vacuole: Brings food into cells and provides support

69 Organelles

- Mitochondrion: Cellular respiration
- Chloroplast: Photosynthesis
- Peroxisome: Oxidation of fatty acids; destroys H₂O₂
- Centrosome: Consists of protein fibers and centrioles

70 The Eukaryotic Nucleus

- 71 The Eukaryotic Nucleus
- 72 Rough Endoplasmic Reticulum
- 73 Detailed Drawing of Endoplasmic Reticulum
- 74 Micrograph of Endoplasmic Reticulum
- 75 Golgi Complex
- 76 Lysosomes and Vacuoles
- 77 Mitochondria
- 78 Chloroplasts

- 79 Chloroplasts
- 80 Chloroplasts
- 81 Peroxisome and Centrosome
- 82 Endosymbiotic Theory
- 83 Endosymbiotic Theory
 - What are the fine extensions on this protozoan?
- 84 Endosymbiotic Theory