Chapter 3
Observing Microorganisms Through A Microscope

Observing Microorganisms

Units of Measurement
- $1 \, \mu m = 10^{-6} \, m = 10^{-3} \, mm$
- $1 \, nm = 10^{-9} \, m = 10^{-6} \, mm$
- $1000 \, nm = 1 \, \mu m$
- $0.001 \, \mu m = 1 \, nm$

Microscopy: The Instruments
- A simple microscope has only one lens

Light Microscopy
- Use of any kind of microscope that uses visible light to observe specimens
 - Types of light microscopy
 - Compound light microscopy
 - Darkfield microscopy
 - Phase-contrast microscopy
 - Differential interference contrast microscopy
 - Fluorescence microscopy
 - Confocal microscopy

The Compound Light Microscope

Compound Light Microscopy
- In a compound microscope, the image from the objective lens is magnified again by the ocular lens
- Total magnification = objective lens \times ocular lens

Compound Light Microscopy
- Resolution is the ability of the lenses to distinguish two points
- A microscope with a resolving power of 0.4 nm can distinguish between two points ≥ 0.4 nm
- Shorter wavelengths of light provide greater resolution
- As does increased numerical aperture. Increased aperture is achieved by increased magnification or the use of higher quality lenses.

Compound Light Microscopy
- The refractive index is a measure of the light-bending ability of a medium
- The light may bend in air so much that it misses the small high-magnification lens
- Immersion oil is used to keep light from bending, thus reducing refraction and increasing resolution.
- Lost light in this case = poor image quality.

Refraction in the Compound Microscope

Brightfield Illumination
- Dark objects are visible against a bright background
- Light reflected off the specimen does not enter the objective lens which is why it appears dark.
- Con: translucent specimens are nearly invisible as light simply passes through them
creating the need for stains.

12 **Darkfield Illumination**
- Light objects are visible against a dark background
- Light reflected off the specimen enters the objective lens
- Background darkens due to lost light

13 **Darkfield Illumination**
- Light enters the microscope for illumination of the sample.
- A specially sized disc, the "patch stop" blocks some light from the light source, leaving an outer ring of illumination.
- The condenser lens focuses the light towards the sample.
- The light enters the sample. Most is directly transmitted, while some is scattered from the sample.
- The scattered light enters the objective lens, while the directly transmitted light simply misses the lens and is not collected due to a direct illumination block.
- Only the scattered light goes on to produce the image, while the directly transmitted light is omitted.

14 **Phase-Contrast Microscopy**
- Phase contrast microscopy is a technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image.
- The phase shifts themselves are invisible to the human eye, but become visible when they are shown as brightness changes.
- Accentuates diffraction of the light that passes through a specimen
- Allows in vivo study of cells without staining

15 **Differential Interference Contrast Microscopy**
- Accentuates diffraction of the light that passes through a specimen; uses two beams of light
- Excellent for use with live, unstained samples.

16 **Differential Interference Contrast Microscopy**
- Differential interference contrast microscopy (DIC), also known as Nomarski Interference Contrast (NIC) or Nomarski microscopy, is an optical microscopy illumination technique used to enhance the contrast in unstained, transparent samples.
- DIC works on the principle of interferometer to gain information about the optical path length of the sample, to see otherwise invisible features.
- A relatively complex lighting scheme produces an image with the object appearing black to white on a grey background.
- This image is similar to that obtained by phase contrast microscopy but without the bright diffraction halo.

17 **Fluorescence Microscopy**
- Uses UV light
- Fluorescent substances absorb UV light and emit visible light
- Cells may be stained with fluorescent dyes (fluorochromes)
- A sample is illuminated with light of a wavelength which causes fluorescence in the sample. The light emitted by fluorescence, which is at a different, longer, wavelength than the illumination, is then detected through a microscope objective.
- Excellent resolution, toxic to live cells

18 **Confocal Microscopy**
- Cells stained with fluorochrome dyes
- Short wavelength (blue) light used to excite the dyes
- The light illuminates each plane in a specimen to produce a three-dimensional image
- Up to 100 µm deep
- Confocal microscopy has incredibly high resolving power compared to conventional forms of light microscopy, but focus can be limited by aberrations.
- Any imperfections along the optical path will cause a reduction in signal intensity and quality of the image.

19. **Two-Photon Microscopy**
- Cells stained with fluorochrome dyes
- Two photons of long-wavelength (red) light used to excite the dyes
- Allows imaging of living tissue to a depth of 1 mm
- Better alternative to Confocal Microscopy due to its deeper penetration.

20. **Scanning Acoustic Microscopy (SAM)**
- Measures sound waves that are reflected back from an object
- Used to study cells attached to a surface
- Can provide information on the elasticity of cells or the physical forces holding structures together.
- Resolution 1 µm

21. **Electron Microscopy**
- Uses electrons instead of light
- The shorter wavelength of electrons gives greater resolution

22. **Transmission Electron Microscopy (TEM)**
- TEM is a microscopy technique whereby a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through.
- Ultra thin sections of specimens
- Light passes through specimen, then an electromagnetic lens, to a screen or film
- Specimens may be stained with heavy metal salts
- This enables the instrument's user to examine fine detail—even as small as a single column of atoms.

23. **Transmission Electron Microscopy (TEM)**
- 10,000–100,000×; resolution 2.5 nm

24. **Scanning Electron Microscopy (SEM)**
- Type of electron microscopy where electrons fired at a specimen interact with the atoms that make up the sample producing signals that contain information about the sample's surface topography, composition, and other properties such as electrical conductivity.
- An electron gun produces a beam of electrons that scans the surface of a whole specimen
- Secondary electrons emitted from the specimen produce the image

25. **Scanning Electron Microscopy (SEM)**
- 1,000–10,000×; resolution 20 nm

26. **Scanned-Probe Microscopy**
- Scanning tunneling microscopy (STM) uses a metal probe to scan a specimen
- Resolution 1/100 of an atom
- An image of the surface is obtained by mechanically moving the probe over the specimen, line by line, and recording the probe-surface interaction as a function of position.
Scanned-Probe Microscopy
- Atomic force microscopy (AFM) uses a metal- and-diamond probe inserted into the specimen.
- Produces three-dimensional images with a resolution measured in nm.

Preparing Smears for Staining
- Staining: Coloring the microbe with a dye that emphasizes certain structures
- Smear: A thin film of a solution of microbes on a slide
- A smear is usually fixed to attach the microbes to the slide and to kill the microbes

Preparing Smears for Staining
- Live or unstained cells have little contrast with the surrounding medium. Researchers do make discoveries about cell behavior by observing live specimens.

Preparing Smears for Staining
- Stains consist of a positive and negative ion
- In a basic dye, the chromophore (color molecule) is a cation (+)
- In an acidic dye, the chromophore is an anion (-)
- Staining the background instead of the cell is called negative staining
- (note: bacteria carry a slight negative charge at pH 7)

Simple Stains
- Simple stain: Use of a single basic dye
- A mordant may be used to hold the stain or coat the specimen to enlarge it

Differential Stains
- Used to distinguish between bacteria
 - Gram stain
 - Acid-fast stain

Gram Stain
- Classifies bacteria into gram-positive or gram-negative
 - Gram-positive bacteria tend to be killed by penicillin and detergents
 - Gram-negative bacteria are more resistant to antibiotics

Gram Stain

Micrograph of Gram-Stained Bacteria

Acid-Fast Stain
- Stained waxy cell wall is not decolorized by acid-alcohol
 - Mycobacterium
 - Nocardia

Acid-Fast Stain

Acid-Fast Bacteria

Special Stains
- Used to distinguish parts of cells
 - Capsule stain
 - Endospore stain
 - Flagella stain

Negative Staining for Capsules
- Cells stained
- Negative stain
Endospore Staining
- Primary stain: Malachite green, usually with heat
- Decolorize cells: Water
- Counterstain: Safranin

Flagella Staining
- Mordant on flagella
- Carbolfuchsin simple stain

Which stain would be used to identify microbes in the genera *Mycobacterium* and *Nocardia*?

How do unstained endospores appear?
- Stained endospores?