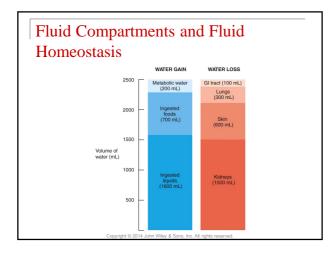
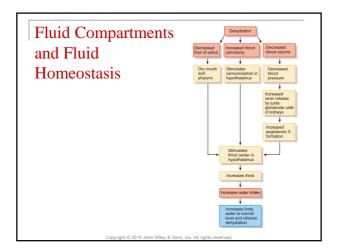

- In adults, **body fluids** make up between 55% and 65% of total body mass.
- Body fluids are present in two main compartments—inside cells (2/3) and outside cells (1/3).
- Intracellular fluids is cytosol.
- Extracellular fluid is interstitial fluid (80%) and blood plasma (20%)

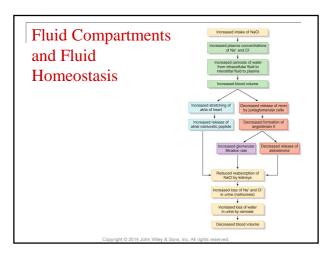


Fluid Compartments and Fluid Homeostasis

- The **plasma membrane** of cells separates intracellular fluid from interstitial fluid.
- **Blood vessel walls** divide the interstitial fluid from blood plasma.
- Capillary walls are thin enough to allow exchange of water and solutes between blood plasma and interstitial fluid.



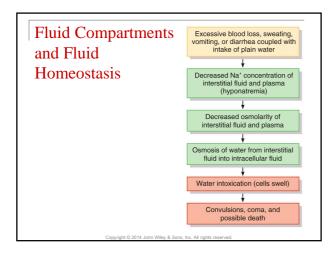
- Filtration, reabsorption, diffusion and osmosis allow continuous exchange of water and solutes among body fluid compartments.
- The balance of inorganic compounds that dissociate into ions (electrolytes) is closely related to fluid balance.
- The body gains water by ingestion and metabolic synthesis.
- The body loses water via urination, perspiration, exhalation and in feces.



- The level of aerobic respiration determines the volume of metabolic water formed. The amount of water formed is directly proportional to the amount of ATP produced.
- When water loss is greater than water gain, dehydration occurs leading to increased thirst.


Fluid Compartments and Fluid Homeostasis

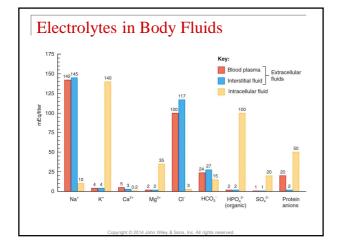
- Elimination of excess body water occurs through urine production.
- The amount of urinary salt loss is the main factor determining body fluid volume.
- The two main solutes in urine are sodium ions (Na⁺) and chloride ions (Cl⁻).
- Wherever solutes go, water follows.



- 3 major hormones control renal Na⁺ and Cl⁻:
 - 1. Angiotensin II
 - 2. Aldosterone
 - 3. Atrial natriuretic peptide (ANP)
- The major hormone that regulates water loss is antidiuretic hormone (ADH)

Fluid	TABLE 27.1		
Compartments	Summary of Factors That Maintain Body Water Balance		
Compartments	FACTOR	MECHANISM	EFFECT
and Fluid	Thirst center in hypothalamus	Stimulates desire to drink fluids.	Water gained if thirst is quenched.
Homeostasis	Angiotensin II	Stimulates secretion of aldosterone.	Reduces loss of water in urine.
nomeostasis	Aldosterone	By promoting urinary reabsorption of Na ⁺ and Cl ⁻ , increases water reabsorption via osmosis.	Reduces loss of water in urine.
	Atrial natriuretic peptide (ANP)	Promotes natriuresis, elevated urinary excretion of Na ⁺ (and Cl ⁻), accompanied by water.	Increases loss of water in urine.
	Antidiuretic hormone (ADH), also known as vasopressin	Promotes insertion of water-channel proteins (aquaporin-2) into apical membranes of principal cells in collecting ducts of kidneys. As a result, water permeability of these cells increases and more water is reabsorbed.	Reduces loss of water in urine.

- Water intoxication occurs when excess body water causes cells to swell dangerously.
- This may occur when a person consumes water faster than the kidneys can excrete it.



Electrolytes in Body Fluids

- Ions formed when electrolytes dissociate and dissolve:
 - Control osmosis of water between fluid compartments
 - Help maintain the acid-base balance
 - Carry electrical current
 - Serve as cofactors

Electrolytes in Body Fluids

- The concentration of ions is expressed in units of milliequivalents per liter (mEq/liter).
- Blood plasma, interstitial fluid and intracellular fluid have different concentrations of electrolytes and protein ions.
- Blood plasma contains many protein ions and interstitial fluid contains only a few.

Electrolytes in Body Fluids

Sodium: most abundant cations in extracellular fluid

- Used for impulse transmission, muscle contraction, fluid and electrolyte balance.
- It's level is controlled by aldosterone, ADH and ANP

Chloride: the major extracellular anion

- Helps regulate osmotic pressure between compartments
- Forms HCI in the stomach
- Regulation of Cl⁻ balance is controlled by aldosterone

Copyright © 2014 John Wiley & Sons, Inc. All rights reserve

Electrolytes in Body Fluids

Potassium: most abundant cation in intracellular fluid

- Involved in fluid volume, impulse conduction, muscle contraction and regulating pH
- Mineralocorticoids (mainly aldosterone) regulate the plasma level

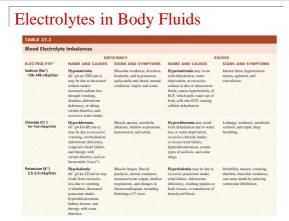
Bicarbonate: important plasma ion

- Major member of the plasma acid-base buffer system
- Kidneys reabsorb or secrete it for final acid-base balance

Electrolytes in Body Fluids

Calcium: most abundant mineral in the body

- Structural component of bones and teeth
- Used for blood coagulation, neurotransmitter release, muscle tone, excitability of nerves and muscles
- Level in plasma regulated by parathyroid hormone


Phosphate: occurs as calcium phosphate salt

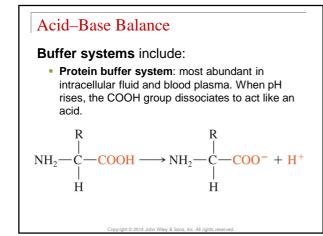
- Used in the buffer system
- Regulated by parathyroid hormone and calcitriol

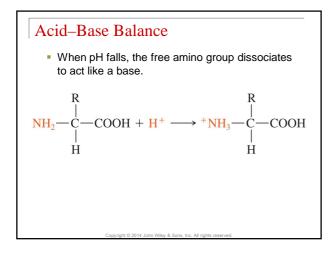
Electrolytes in Body Fluids

Magnesium: an intracellular cation

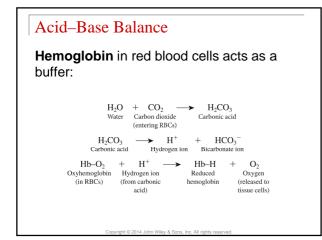
- Activates enzymes involved in carbohydrate and protein metabolism
- Used in myocardial function, transmission in the CNS and operation of the sodium pump

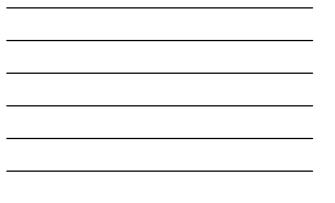
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

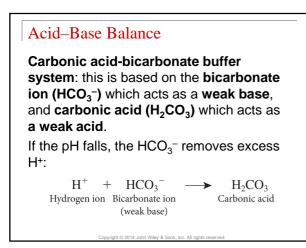

	2	n Body F			
TABLE 27.2					
Blood Electrolyt	e Imbalances				
	DEFICIENCY		EXCESS		
ELECTROLYTE*	NAME AND CAUSES	SIGNS AND SYMPTOMS	NAME AND CAUSES	SIGNS AND SYMPTOMS	
Calcium (Ca ²⁺) Total = 9.0–10.5 mg/dL; ionized = 4.5–5.5 mEq/liter	Hypocalcemia (hi ^{-/} -pö-kal-SÈ-mö-a) may be due to increased calcium loss, reduced calcium intake, elevated phrosphate levels, or hypoparathyroidism.	Numbness and tingling of fingers; hyperactive reflexes, muscle cramps, tetany, and convulsions; bone fractures; spasms of laryngeal muscles that can cause death by asphyxiation.	Hypercalcemia may result from hyperparathyroidism, some cancers, excessive intake of vitamin D, and Paget's disease of bone.	Lethargy, weakness, anorexia, nausea, vomiting, polyuria, itching, bone pain, depression, confusion, paresthesia, stupor, and coma.	
'hosphate (HPO ₄ ²⁻) 1.7–2.6 mEq/liter	Hypophosphatemia (hi ⁺ -pö-fos-fa-TB-mö-a) may occur through increased urinary losses, decreased intestinal absorption, or increased utilization.	Confusion, seizures, coma, chest and muscle pain, numbrass and tingling of fingers, decreased coordination, memory loss, and lethargy.	Hyperphosphatemia occurs when kidneys fail to excrete excess phosphate, as in renal failure; can also result from increased intake of phosphates or destruction of body cells, which releases phosphates into blood.	Anorexia, nausea, vomiting, muscular weakness, hyperactive reflexes, tetany, and tachycardia.	
Məgnesium (Mg²*) 1.3–2.1 mEq/liter	Hypomagnesemia (hf ⁻ pö-mag-ne-SE-mē-a) may be due to inadequate intake or excessive loss in urine or feces; also occurs in alcoholism, malnutrition, diabetes mellitus, and diaretic therapy.	Weakness, irritability, tetany, delirium, convulsions, confusion, ancerexia, nausea, voomiting, paresthesia, and cardiae arrhythmias.	Hypermagnesemia occurs in renal failure or due to increased intake of Mg ²⁺ , such as Mg ²⁺ - containing antacids; also occurs in aldosterone deficiency and hypothyroidism.	Hypotension, muscular weakness or paralysis, nausea, vomiting, and altered mental functioning.	

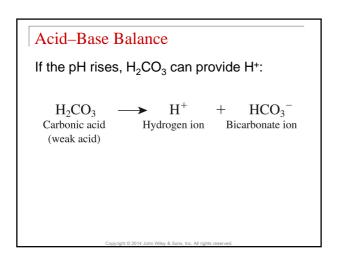

Acid–Base Balance

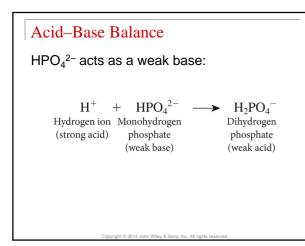

The pH of arterial blood ranges from 7.35 to 7.45. Several mechanisms maintain this range.


- Buffer systems
- Exhalation of carbon dioxide
- Kidney excretion of H⁺

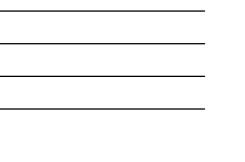


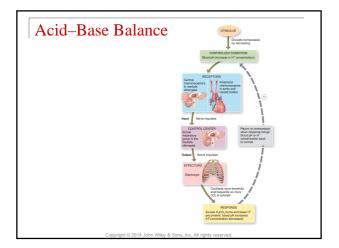






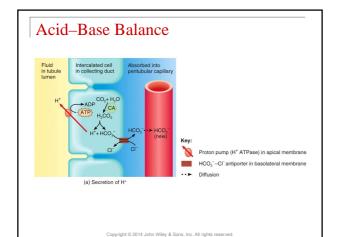
Phosphate buffer system: this system acts similarly to the carbonic acid-bicarbonate buffer system. **Dihydrogen phosphate** $(H_2PO_4^{-})$ and **monohydrogen phosphate** (HPO_4^{2-}) are the ions used in this system. $H_2PO_4^{-}$ acts as a weak acid:


OH^-	$+$ $H_2PO_4^-$	\rightarrow	H_2O	+ HPO ₄ ²⁻
Hydroxide ion	Dihydrogen		Water	Monohydrogen
(strong base)	phosphate			phosphate
	(weak acid)			(weak base)

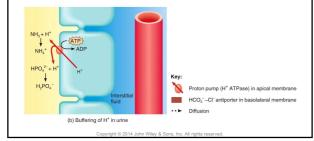


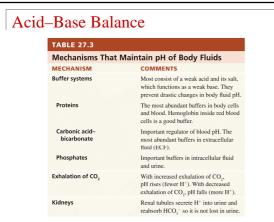
Exhalation of carbon dioxide: CO_2 mixes with water in the blood to form **carbonic acid (H₂CO₃)**. Exhaling CO_2 leads to less acid production and a rise in pH. Retaining CO_2 leads to more acid production and a drop in pH.

CO ₂ -	+ H ₂ O	\longrightarrow H ₂ CO ₃ \Longrightarrow	→ H ⁺ +	- HCO ₃ ⁻
Carbon	Water	Carbonic	Hydrogen	Bicarbonate
dioxide		acid	ion	ion



Acid–Base Balance


Kidney excretion of H⁺: Excreting H⁺ in the urine removes **nonvolatile acids**. The **proximal convoluted tubules** and **collecting ducts** of the kidneys secrete H⁺ into the tubular fluid.


ht © 2014 John Wiley & Sons. Inc. All ric

Acid-Base Balance

Some H⁺ secreted into the tubular fluid of the collecting duct is buffered by HPO_4^{2-} and NH_3 . The buffers are excreted in the urine.

opyright © 2014 John Wiley & Sons, Inc. All rights re

Acid-Base Balance

- Acid-base imbalances may occur.
- Acidosis: blood pH is below 7.35
- Alkalosis: blood pH is above 7.45
- Respiratory acidosis: blood pH drops due to excessive retention of CO₂ leading to excess H₂CO₃.
- Respiratory alkalosis: blood pH rises due to excessive loss of CO₂ as in hyperventilation.
- Metabolic acidosis: arterial blood levels of HCO₃⁻ falls.
- Metabolic alkalosis: arterial blood levels of HCO₃⁻ rises.

TABLE 27.4			
	Acidosis and Alkalosis		
CONDITION	DEFINITION	COMMON CAUSES	COMPENSATORY MECHANISM
Respiratory acidosis	Increased P _{co.} (above 45 mmHg) and decreased pH (below 7.35) if no compensation.	Hypoventilation due to emphysema, pulmonary edema, trauma to respiratory center, airway obstructions, or dysfunction of muscles of respiration.	Renal: increased excretion of H ⁺ ; increased reabsorption of HCO_3^- . If compensation is complete, pH will be within normal range but P_{CO_2} will be high.
Respiratory alkalosis	Decreased P _{co1} (below 35 mmHg) and increased pH (above 7,43) if no compensation.	Hyperventilation due to oxygen deficiency, pulmonary disease, cerebrovascular accident (CVA), or severe anxiety.	Renal: decreased excretion of H ⁺ ; decrease reatsorption of HCO_3 . If compensation is complete, pH will be within normal range but P_{CO_3} will be low.
Metabolic acidosis	Decreased HCO ₃ ⁻ (below 22 mEq/liter) and decreased pH (below 7.35) if no compensation.	Loss of bicarbonate ions due to diarrhea, accumulation of acid (ketosis), renal dysfunction.	Respiratory: hyperventilation, which increases loss of CO ₂ . If compensation is complete, pH will be within normal range but HCO ₃ ⁻ will be low.
Metabolic alkalosis	Increased HCO ₃ ⁻ (above 26 mEq/liter) and increased pH (above 7.45) if no compensation.	Loss of acid due to vomiting, gastric suctioning, or use of certain diuretics; excessive intake of alkaline drugs.	Respiratory: hypoventilation, which slows loss of CO ₂ . If compensation is complete, pH will be within normal range but HCO ₂ will be high.

Acid–Base Balance

Interactions Animation:

Regulation of pH

You must be connected to the Internet and in Slideshow Mode to run this animation.

Aging and Fluid, Electrolyte, and Acid-Base Homeostasis

- Significant differences exist between adults and infants in respect to fluid distribution, regulation of fluid and electrolyte balance and acid-base homeostasis. Differences exist due to: proportion and distribution of water
- Metabolic rate
- Functional development of the kidneys
- Body surface area
- Breathing rate
- Ion concentrations

Aging and Fluid, Electrolyte, and Acid-Base Homeostasis

- Older adults often have impaired ability to maintain fluid, electrolyte and acid-base balance. Basically, all systems slow down and function less efficiently.
- Older adults often suffer with: dehydration and hypernatremia – inadequate fluid intake, loss of more water than Na⁺
- Hypokalemia chronic use of laxatives, drugs that cause K⁺ loss

Aging and Fluid, Electrolyte, and Acid-Base Homeostasis

Acidosis – impaired ability of lungs and kidneys to compensate for acid-base imbalances.

End of Chapter 27

Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.