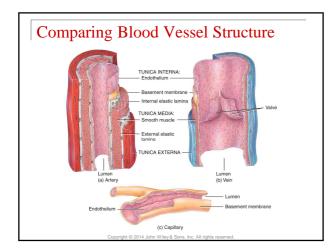


Principles of Anatomy and Physiology

14th Edition

CHAPTER 21 The Cardiovascular System: Blood Vessels and Hemodynamics

Introduction

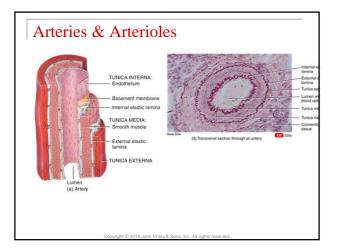

The purpose of the chapter is to:

- 1. Discuss the development, structure, and function of our blood vessels
- 2. Examine the factors that affect blood flow
- 3. Discuss how the body controls blood pressure and blood flow
- 4. Compare and contrast the various circulatory routes in the body
- 5. Learn about shock, disorders, and disease associated with the blood vessels

Blood Vessel Structure

In general a blood vessel has 3 layers:

- 1. Tunica interna (a.k.a. tunica intima)
- Innermost layer, adjacent to lumen
- 2. Tunica media
- Middle layer, smooth muscle and elastic fibers
- 3. Tunica externa
 - Outermost layer, adjacent to surrounding tissue

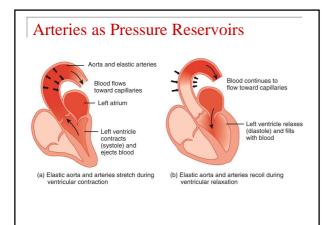


Vessels of the CV System

Anatomy Overview:

 <u>The Cardiovascular System</u> Arteries, arterioles, capillaries, venules, and veins

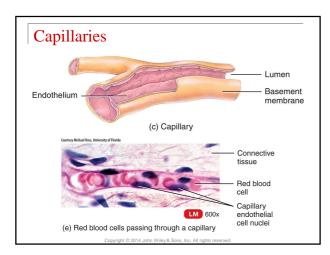
Arteries


Arteries carry blood away from the heart to the tissues

- The walls of the arteries are elastic which allows them to absorb the pressure created by ventricles of the heart as they pump blood into the arteries
- Because of the smooth muscle in the tunica media, arteries can regulate their diameter

Types of Arteries

Elastic arteries (conducting arteries)

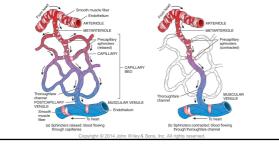

- Large diameter
- More elastic fibers, less smooth muscle
- Function as pressure reservoirs
- Muscular arteries (distributing arteries)
 - Medium diameter
 - More smooth muscle, fewer elastic fibers
 - Distribute blood to various parts of the body

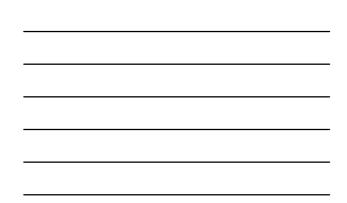
Anastomoses

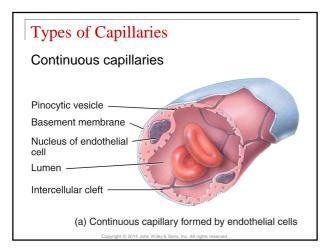
An anastomoses is the union of the branches of 2 or more arteries supplying the same region of the body

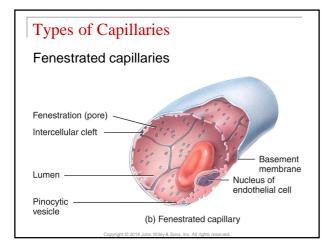
- This provides an alternate route for blood flow
- Arteries that do not form an anastomosis are
- called "end arteries"If an end artery is blocked, blood cannot get to that
 - particular region of the body and necrosis can occur

Capillaries

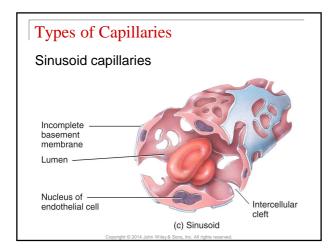

- Capillaries are microscopic vessels that usually connect arterioles and venules
- Capillary walls are composed of a single layer of cells and a basement membrane
- Because their walls are so thin, capillaries permit the exchange of nutrients and wastes between blood and tissue cells
 Lumen Endothelium

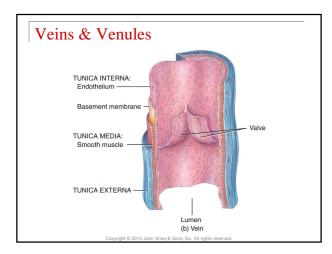

(c) Capillary

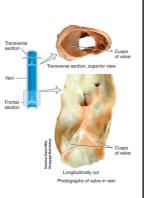



Blood Flow Through Capillaries

Capillaries branch to form an extensive capillary network throughout the tissues and are found near almost every cell in the body

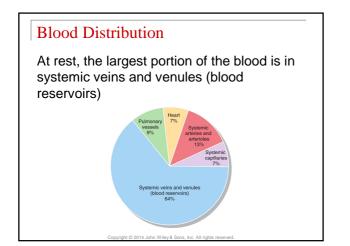






Venules

- Venules are small vessels that are formed by the union of several capillaries
- Venules drain blood from capillaries into veins


Veins

- Veins are formed from the union of several venules
- Compared to arteries, veins have a thinner tunica interna and media and a thicker tunica externa
 - Veins have less elastic tissue and less smooth muscle than arteries
- Veins contain valves

TABLE 21.1					
Distinguishing	inguishing Features of Blood Vessels				
BLOOD VESSEL	SIZE	TUNICA INTERNA	TUNICA MEDIA	TUNICA EXTERNA	FUNCTION
Elastic arteries	Largest arteries in the body.	Well-defined internal elastic lamina.	Thick and dominated by elastic fibers; well-defined external elastic lamina.	Thinner than tunica media.	Conduct blood from heart to muscular arteries.
Muscular arteries	Medium-sized arteries.	Well-defined internal elastic lamina.	Thick and dominated by smooth muscle; thin external elastic lamina.	Thicker than tunica media.	Distribute blood to arterioles.
Arterioles	Microscopic (15-300 µm in diameter).	Thin with a fenestrated internal elastic lamina that disappears distally.	One or two layers of circularly oriented smooth muscle; distalmost smooth muscle cell forms a precapillary sphincter.	Loose collagenous connective tissue and sympathetic nerves.	Deliver blood to capillaries and help regulate blood flow from arteries to capillaries.
Capillaries	Microscopic; smallest blood vessels (5–10 µm in diameter).	Endothelium and basement membrane.	None.	None.	Permit exchange of nutrients and wastes between blood and interstitial fluid; distribute blood to postcapillary venules.
Postcapillary venules	Microscopie (10-50 µm in diameter).	Endothelium and basement membrane.	None.	Sparse.	Pase blood into muscular venules; permit exchange of nutrients and wastes between blood and interstitial fluid and function in white blood cell emigration.
Muscular venules	Microscopic (50-200 µm in diameter).	Endothelium and basement membrane.	One or two layers of circularly oriented smooth muscle.	Sparse.	Pass blood into vein; act as reservoirs for accumulating large volumes of blood (along with postcapillary venules).
Veins	Range from 0.5 mm to 3 cm in diameter.	Endothelium and basement membrane; no internal elastic lamina; contain valves; lumen much larger than in accompanying artery,	Much thinner than in arteries; no external elastic lamina.	Thickest of the three layers.	Return blood to heart, facilitated by valves in limb veins.

Capillary Exchange

Substances cross capillary walls by:

- Diffusion
- Transcytosis
- Bulk flow

Capillary Exchange

Interactions Animation:

Capillary Exchange

You must be connected to the $\ensuremath{\mathsf{Internet}}$ and in Slideshow Mode to run this animation.

Diffusion

Substances such as oxygen, carbon dioxide, glucose, amino acids, and some hormones cross capillary walls via *simple diffusion*

Transcytosis

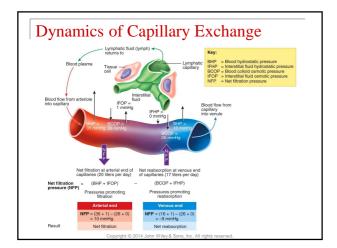
Large, lipid-insoluble molecules (like insulin) cross capillary walls in vesicles via transcytosis

Bulk Flow

Bulk flow is a passive process in which large numbers of ions, molecules, or particles in a fluid move together in the same direction

 Bulk flow occurs from an area of higher pressure to an area of lower pressure, and it continues as long as a pressure difference exists

Bulk flow is more important for regulation of the relative volumes of blood and interstitial fluid


Filtration and Reabsorption

Filtration is pressure-driven movement of fluid and solutes from blood capillaries into interstitial fluid

 Blood hydrostatic pressure (BHP) and interstitial fluid osmotic pressure (IFOP) promote filtration

Reabsorption is pressure-driven movement of fluid and solutes from interstitial fluid into blood capillaries

 Interstitial fluid hydrostatic pressure (IFHP) and blood colloid osmotic pressure (BCOP) promote reabsorption

Starling's Law of the Capillaries

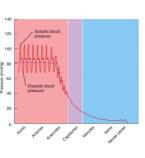
Under normal conditions, the volume of fluid and solutes reabsorbed is almost as large as the volume filtered

NFP = (BHP + IFOP) - (BCOP+ IFHP)

Factors Affecting Blood Flow

- Blood flow is the volume of blood that flows through any tissue in a given time period (in mL/min)
- Total blood flow is cardiac output (CO), the volume of blood that circulates through systemic (or pulmonary) blood vessels each minute
 - CO = heart rate (HR) × stroke volume (SV)
 - CO = mean arterial pressure (MAP) ÷ resistance
 (R)

Cardiac Output


Interactions Animation:

Cardiac Output

You must be connected to the Internet and in Slideshow Mode to run this animation.

Blood Pressure (BP)

- Contraction of the ventricles generates BP
- BP is determined by CO, blood volume, and vascular resistance

 The higher the BP, the greater the blood flow

Vascular Regulation

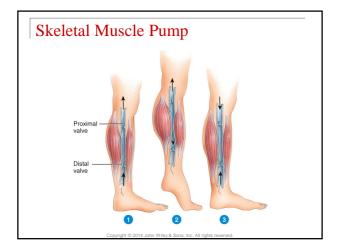
Interactions Animation:

Vascular Regulation

Vascular Resistance (R)

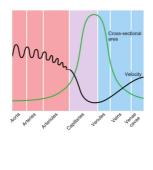
R is the opposition to blood flow due to friction between blood and the walls of blood vessels

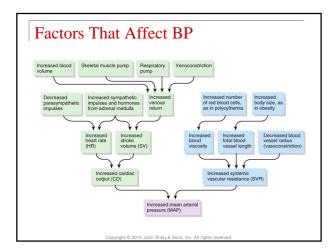
• The higher the R, the smaller the blood flow

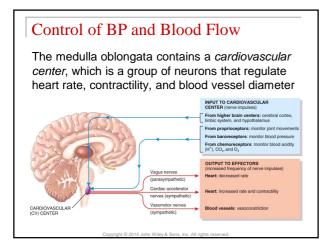

R depends on:

- 1. Size of the blood vessel lumen
- 2. Blood viscosity
- 3. Total blood vessel length

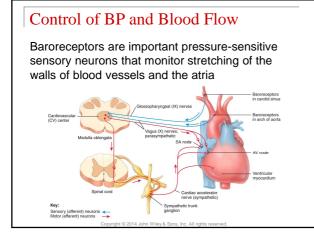
Venous Return

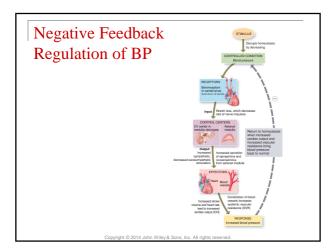

Venous return, the volume of blood flowing back to the heart through the systemic veins, occurs due to the pressure generated by contractions of the heart's left ventricle


- Venous return is assisted by:
 - Valves
 - Respiratory pump
 - Skeletal muscle pump


Velocity of Blood Flow

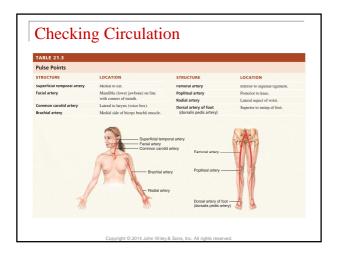
- Blood flow is the volume of blood that flows through a tissue in a given period of time
- Blood flow is inversely related to the cross-sectional area of blood vessels

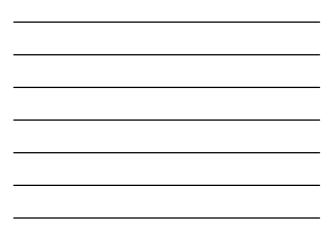


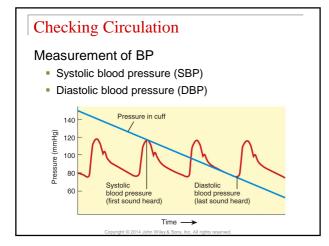


Blood Pressure Regulation

Interactions Animation:


Negative Feedback Regulation of <u>Blood Pressure</u>


TABLE 21.2			
Blood Pressure Reg	ulation by Hormone		
FACTOR INFLUENCING BLOOD PRESSURE	HORMONE	EFFECT ON BLOOD PRESSURE	
CARDIAC OUTPUT			
Increased heart rate and contractility	Norepinephrine, epinephrine.	Increase.	
SYSTEMIC VASCULAR RESISTANCE			
Vasoconstriction	Angiotensin II, antidiurctic hormone (ADH), norepinephrine, ⁶ epinephrine. [†]	Increase.	
Vasodilation	Atrial natriuretic peptide (ANP), epinephrine, [†] nitric oxide.	Decrease.	
BLOOD VOLUME			
Blood volume increase	Aldosterone, antidiuretic hormone.	Increase.	
Blood volume decrease	Atrial natriuretic peptide.	Decrease.	

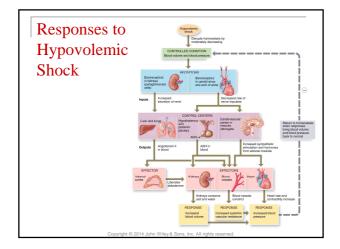


Autoregulation of BP

- Autoregulation is the ability of a tissue to automatically adjust its own blood flow to match its metabolic demand for delivery of oxygen and nutrients and removal of wastes
- Physical and chemical stimuli can lead to autoregulation

Shock and Homeostasis

Shock is an inadequate CO that results in failure of the CV system to meet the metabolic demands of body cells

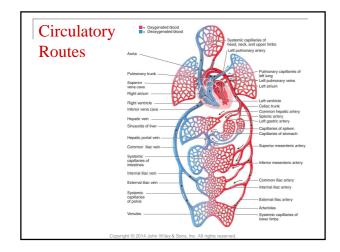

• Cell membranes dysfunction, cell metabolism is abnormal, and cell death may occur

Types of shock:

- 1. Hypovolemic
- 2. Cardiogenic
- 3. Vascular
- 4. Obstructive

Homeostatic Responses to Shock

- Activation of the renin-angiotensinaldosterone system
- Secretion of anti-diuretic hormone
- Activation of the sympathetic division of the autonomic nervous system
- Release of local vasodilators

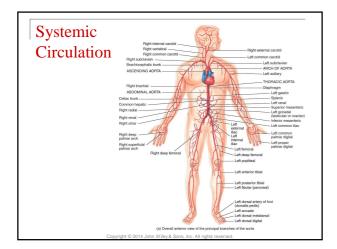


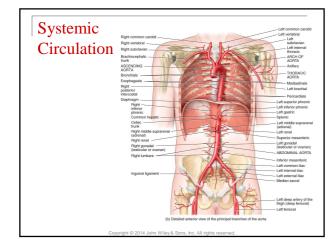
Signs and Symptoms of Shock

- Clammy, cool, pale skin
- Tachycardia
- Weak, rapid pulse
- Sweating
- Hypotension (SBP <90 mmHg)</p>
- Altered mental status
- Decreased urinary output
- Thirst
- Acidosis

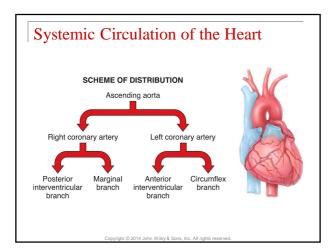
Circulatory Routes

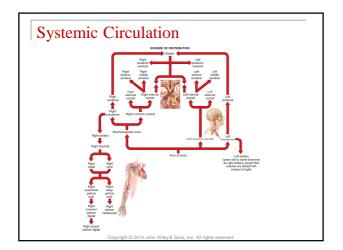
- Systemic circulation
- Pulmonary circulation
- Hepatic portal circulation
- Fetal circulation

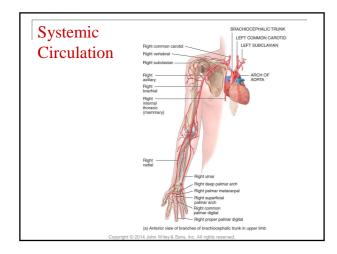


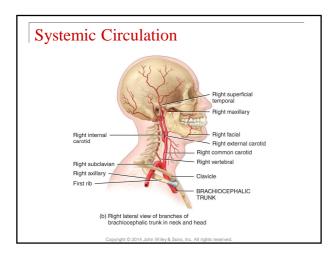

Vessels of the CV System

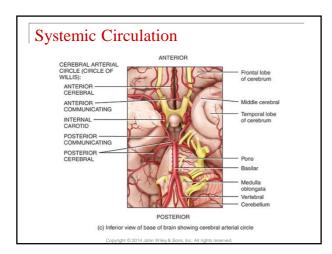
Anatomy Overview:

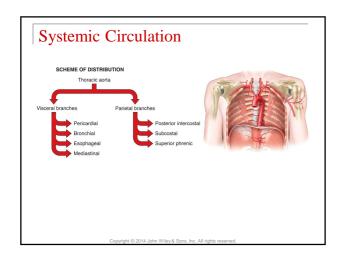

 <u>The Cardiovascular System</u> Arteries, arterioles, capillaries, venules, and veins

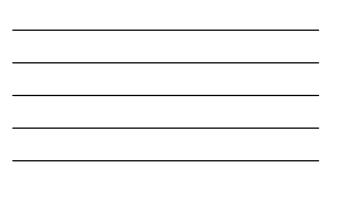


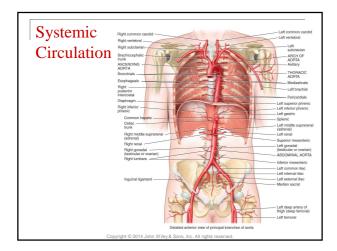


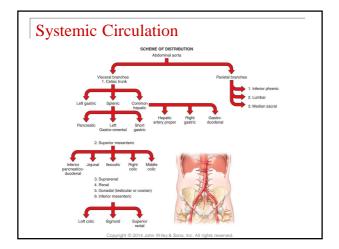


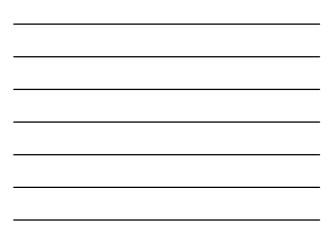


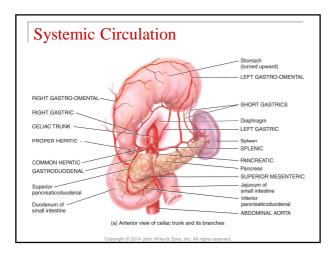


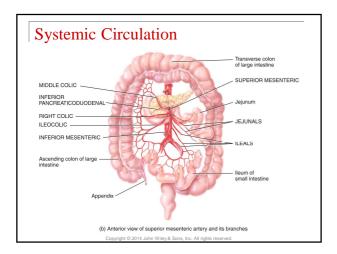


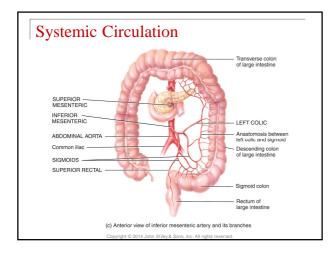


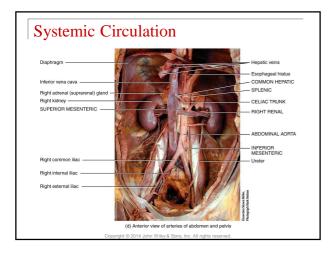


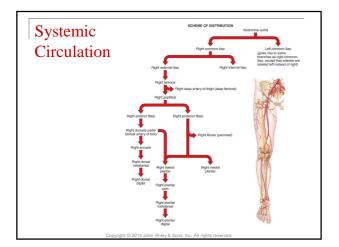


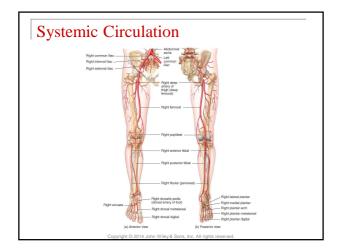


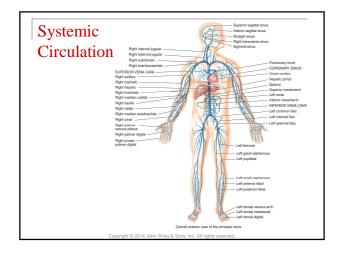


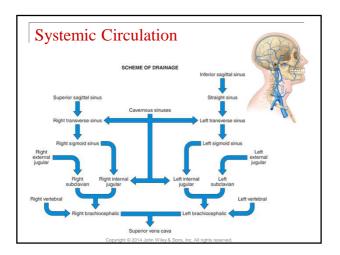


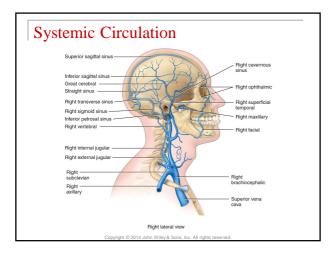


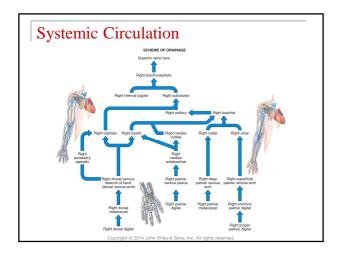


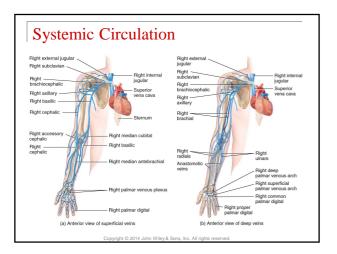


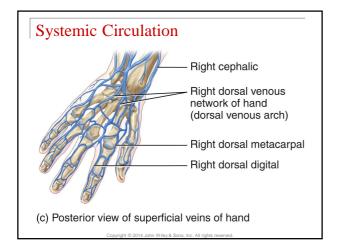


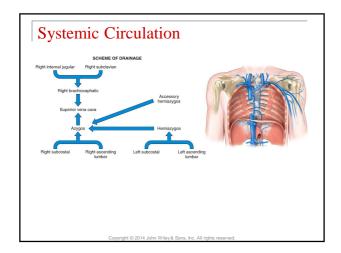


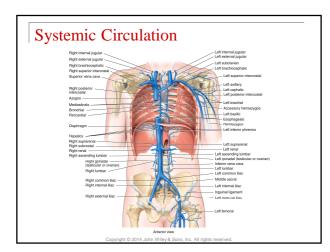


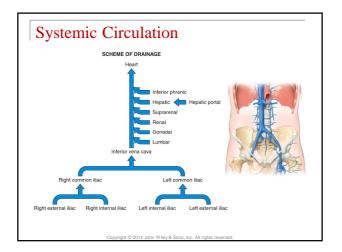


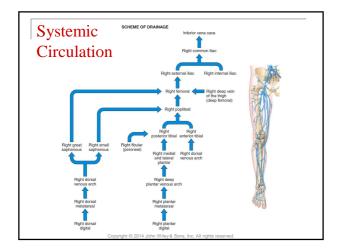


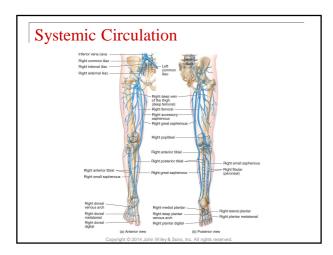


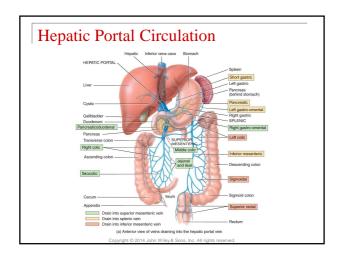


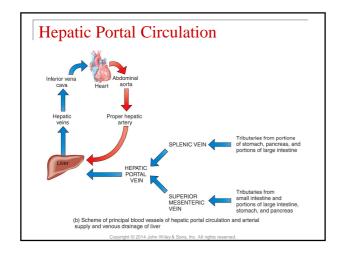


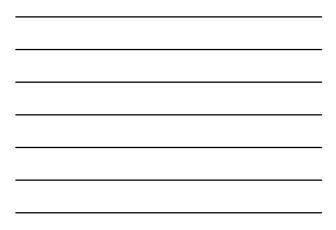


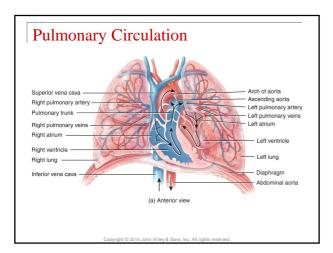


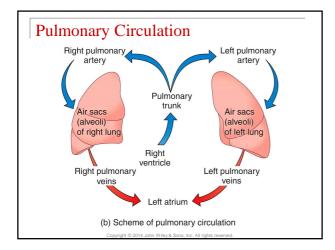


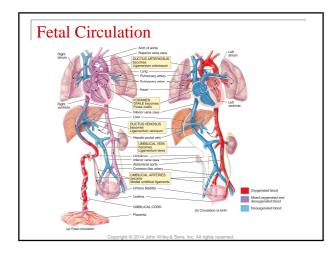


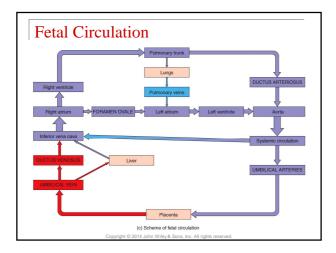


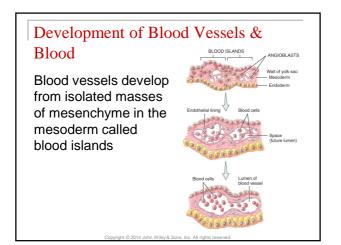


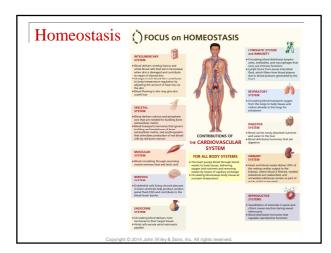












Aging and the CV System

Aging results in:

- Loss of compliance of the aorta
- Reduction in cardiac muscle fiber size
- Progressive loss of cardiac muscular strength
- Decline in maximum heart rate
- Increased systolic blood pressure

Homeostatic Imbalances

- Hypertension
 - SBP > 140 mmHg
- DBP > 90 mmHg
- Primary hypertension
- Secondary hypertension

End of Chapter 21

Copyright 2014 John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.