1 Chapter 13

Viruses, Viroids, and Prions

2 General Characteristics of Viruses

3 General Characteristics of Viruses

- Obligatory intracellular parasites
- Contain DNA or RNA
- Contain a protein coat
- Some are enclosed by an envelope
- Some viruses have spikes
- Most viruses infect only specific types of cells in one host
- Host range is determined by specific host attachment sites and cellular factors
- 4 Virus Sizes

5

✓ How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1

√ √

6 Viral Structure

7 Virion Structure

- Nucleic acid
 - DNA or RNA
- Capsid
 - Capsomeres
- Envelope
- Spikes
- 8 Morphology of a Polyhedral Virus
- 9 Polyhedral Viruses
- 10 Morphology of an Enveloped Virus
- 11 Enveloped Viruses
- 12 Morphology of a Helical Virus
- 13 Morphology of a Complex Virus
- 14

✓ Diagram a nonenveloped polyhedral virus that has spikes. 13-2

- \checkmark
- ▼ √
- 15 Taxonomy of Viruses
- 16 Taxonomy of Viruses
 - Family names end in -viridae.
 - Genus names end in -*virus*.
 - Viral species: A group of viruses sharing the same genetic information and ecological niche (host). Common names are used for species.
 - Subspecies are designated by a number.

17 Taxonomy of Viruses

- Herpesviridae
 - Herpesvirus
 - Human herpes virus HHV-1, HHV-2, HHV-3
- 2 Retroviridae
 - Lentivirus
 - Human immunodeficiency virus HIV-1, HIV-2

18

- \checkmark How does a virus species differ from a bacterial species? 13-3
- ✓ Attach the proper endings to *Papilloma* to show the family and genus that includes HPV, the cause of cervical cancer. 13-4

✓ ✓

- •
- . ✓

19 Isolation, Cultivation, and Identification

20 Growing Viruses

- Viruses must be grown in living cells
 - Bacteriophages form plaques on a lawn of bacteria
- 21 Growing Viruses
 - Animal viruses may be grown in living animals or in embryonated eggs

22 Growing Viruses

- Animal and plant viruses may be grown in cell culture
 - Continuous cell lines may be maintained indefinitely

23 Virus Identification

- Cytopathic effects
- Serological tests
 - Detect antibodies against viruses in a patient
 - Use antibodies to identify viruses in neutralization tests, viral hemagglutination, and Western blot
- Nucleic acids
 - RFLPs: Restriction fragment length polymorphisms
 - PCR

24 Virus Identification

25 🔲

- \checkmark What is the plaque method? 13-5
- \checkmark Why are continuous cell lines of more practical use than primary cell lines for culturing viruses? 13-6
- \checkmark What tests could you use to identify influenza virus in a patient? 13-7

✓

- ✓
- ✓
- √
- ✓
- 26 Viral Multiplication

27 **The Lytic Cycle**

- Attachment: Phage attaches by tail fibers to host cell
- Penetration: Phage lysozyme opens cell wall; tail sheath contracts to force tail core and DNA into cell
- Biosynthesis: Production of phage DNA and proteins
- Maturation: Assembly of phage particles
- Release: Phage lysozyme breaks cell wall
- 28 Lytic Cycle of a T-Even Bacteriophage
- 29 Lytic Cycle of a T-Even Bacteriophage

30 Results of Multiplication of Bacteriophages

- Lytic cycle
 - Phage causes lysis and death of host cell
- Lysogenic cycle
 - Prophage DNA incorporated in host DNA
 - Phage conversion
 - Specialized transduction
- 31 The Lysogenic Cycle
- 32 Generalized Transduction
- 33 Specialized Transduction
- 34 Specialized Transduction
- 35
- ✓ How do bacteriophages get nucleotides and amino acids if they don't have any metabolic enzymes? 13-8
- ✓ Vibrio cholerae produces toxin and is capable of causing cholera only when it is lysogenic. What does this mean? 13-9
- 36 Viral Multiplication
- 37 Multiplication of Animal Viruses
 - Attachment: Viruses attach to cell membrane
 - Penetration by endocytosis or fusion
 - Uncoating by viral or host enzymes
 - Biosynthesis: Production of nucleic acid and proteins
 - Maturation: Nucleic acid and capsid proteins assemble
 - Release by budding (enveloped viruses) or rupture
- 38 Attachment, Penetration, Uncoating
 - By pinocytosis
- 39 Attachment, Penetration, Uncoating
 - By fusion
- 40 Budding of an Enveloped Virus
- 41 Budding of an Enveloped Virus
- 42 Multiplication of DNA Virus
- 43 Sense Strand (+ Strand) RNA Virus

- 44 🔳 Antisense Strand (– Strand) RNA Virus
- 45 Double-Stranded RNA Virus
- 46 Multiplication of RNA-Containing Viruses
- 47 Multiplication of a Retrovirus
- 48
- \checkmark Describe the principal events of attachment, entry, uncoating, biosynthesis, maturation, and release of an enveloped DNA-containing virus. 13-10
- ~
- 50 Viruses and Cancer
- 51 Cancer
 - Activated oncogenes transform normal cells into cancerous cells
 - Transformed cells have increased growth, loss of contact inhibition, tumor-specific transplant antigens, and T antigens
 - The genetic material of oncogenic viruses becomes integrated into the host cell's DNA

52 Oncogenic Viruses

- I Oncogenic DNA viruses
 - Adenoviridae
 - Herpesviridae
 - Poxviridae
 - Papovaviridae
 - Hepadnaviridae
- ² Oncogenic RNA viruses
 - Retroviridae
 - Viral RNA is transcribed to DNA, which can integrate into host DNA
 - HTLV-1
 - HTLV-2

53

- \checkmark What is a provirus? 13-11
- ✓ How can an RNA virus cause cancer if it doesn't have DNA to insert into a cell's genome? 13-12

√ √

~

54 🔲 Latent and Persistent Viral Infections

55 Latent Viral Infections

- Virus remains in asymptomatic host cell for long periods
 - Cold sores, shingles

56 Persistent Viral Infections

- Disease processes occurs over a long period; generally is fatal
 - Subacute sclerosing panencephalitis (measles virus)

✓ Is shingles a persistent or latent infection? 13-13, 13-14

√ √

~

58 Prions, Viroids, and Plant Viruses

59 Prions

- Proteinaceous Infectious particle
- Inherited and transmissible by ingestion, transplant, and surgical instruments
 - Spongiform encephalopathies: Sheep scrapie, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, mad cow disease
- D.

60 Prions

- PrP^C: Normal cellular prion protein, on cell surface
- PrP^{Sc}: Scrapie protein; accumulates in brain cells, forming plaques

61 How a Protein Can Be Infectious

62 Plant Viruses and Viroids

- Plant viruses: Enter through wounds or via insects
- Viroids: Infectious RNA; e.g., potato spindle tuber disease

63

- ✓ Contrast viroids and prions, and for each name a disease it causes. 13-15, 13-16
- ✓ How do plant viruses enter host cells? 13-17
- \checkmark
- ✓
- ✓
- ✓
- \checkmark

64 🔲 Virus Families That Affect Humans

65 Parvoviridae

- Single-stranded DNA, nonenveloped viruses
 - Fifth disease
 - Anemia in immunocompromised patients

66 🔳 Adenoviridae

- Double-stranded DNA, nonenveloped viruses
 - Respiratory infections in humans
 - Tumors in animals

67 Papovaviridae

- Double-stranded DNA, nonenveloped viruses
 - Papillomavirus
 - –Human wart virus
 - Polyomavirus
 - -Cause tumors; some cause cancer
- 68 Poxviridae
 - Double-stranded DNA, enveloped viruses
 - Orthopoxvirus (vaccinia

and smallpox viruses)

Molluscipoxvirus

- Smallpox
- Molluscum
- Cowpox

69 Herpesviridae

- Double-stranded DNA, enveloped viruses
 - Simplexvirus (HHV-1 and HHV-2)
 - Varicellovirus (HHV-3)
 - Lymphocryptovirus (HHV-4)
 - Cytomegalovirus (HHV-5)
 - Roseolovirus (HHV-6)
 - HHV-7
 - Kaposi's sarcoma (HHV-8)
- Some herpesviruses can remain latent in host cells

70 Hepadnaviridae

- Double-stranded DNA, enveloped viruses
 - Hepatitis B virus
 - Use reverse transcriptase

71 Picornaviridae

- Single-stranded RNA, + strand, nonenveloped
 - Enterovirus
 - -Poliovirus and coxsackievirus
 - Rhinovirus
 - Hepatitis A virus

72 Caliciviridae

- Single-stranded RNA, + strand, nonenveloped
 - Hepatitis E virus
 - Norovirus causes gastroenteritis

73 Togaviridae

- Single-stranded RNA, + strand, enveloped
 - Alphavirus
 - -Transmitted by arthropods
 - Rubivirus (rubella virus)

74 Flaviviridae

- Single-stranded RNA, + strand, enveloped
 - Arboviruses can replicate in arthropods; include yellow fever, dengue, SLE (systemic lupus erythematosus), and West Nile viruses

contagiosum

Hepatitis C virus

75 Coronaviridae

- Single-stranded RNA, + strand, enveloped
 - Upper respiratory infections
 - Coronavirus
 - SARS

76 Rhabdoviridae

- Single-stranded RNA, strand, one RNA strand
 - Vesiculovirus
 - Lyssavirus (rabies virus)
 - Cause numerous animal diseases

77 Filoviridae

- Single-stranded RNA, strand, one RNA strand
 - Filovirus
 - Enveloped, helical viruses
 - Ebola and Marburg viruses

78 Paramyxoviridae

- Single-stranded RNA, strand, one RNA strand
 - Paramyxovirus
 - Morbillivirus
 - Parainfluenza
 - Mumps
 - Newcastle disease (chickens)

79 Deltaviridae

- Single-stranded RNA, strand, one RNA strand
 - Hepatitis D virus
 - Depends on coinfection with hepadnavirus

80 Orthomyxoviridae

- Single-stranded RNA, strand, multiple RNA strands
 - Envelope spikes can agglutinate RBCs
 - Influenzavirus (influenza viruses A and B)
 - Influenza C virus

81 🔳 Avian Influenza

82 Bunyaviridae

- Single-stranded RNA, strand, multiple RNA strands
 - Bunyavirus (CE virus)
 - Hantavirus

83 Arenaviridae

- Single-stranded RNA, strand, multiple RNA strands
 - Helical capsids contain RNA-containing granules
 - Lymphocytic choriomeningitis
 - VEE (Venezuelan Equine Encephalitis) and Lassa fever

84 Retroviridae

- Single-stranded RNA, 2 RNA strands, produce DNA
 - Use reverse transcriptase to produce DNA from viral genome
 - Lentivirus (HIV)
 - Oncogenic viruses
 - -Includes all RNA tumor viruses

85 Reoviridae

- Double-stranded RNA, nonenveloped
 - *Reovirus* (respiratory enteric orphan)
 - Rotavirus (mild respiratory infections and gastroenteritis)
 - Colorado tick fever